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ABSTRACT

Estimating the population total in two-stage
survey sampling is considered making use of a
(superpopulation) model. The problem is then
really one of predictirg fr unobserved part of
the total, and the concept of predictive likeli-
hood is studied. Prediction intervals and a pre-
dictor for the population total are derived for
the normal case, based on predictive likelihood.

1. INTRODUCTION

Two-stage surveys are used in sampling from
finite populations of, say, N primary units or
clusters, where each primary unit consists of
rai secondary units. N is assumed known, but
the me- are imknown before sampling. Let yij
be the value of the variable of interest for sec-
ondary unit j of i'th primary unit. The problem
is to estimate the total

N mi
t = E E

j=i 3=1

An example of this situation is considered in
Thomsen and Tesfu (1988), with t being the size
of a particular population. The primary units
are certain administrative units, the secondary
units are households and yi; is the number of
persons in household j of the i'th administra-
tive tmit.

We assume that, before sampling, other mea-
sures of the sizes of the primary units are avail-
able to us. Let xi, xN be these measures and
let X = xi.

The sampling plan is as follows: At stage
1 a sample s of size no of the primary units
(1, ..., N) is selected according to some sam-
pling design, and at stage 2 we select for each

iEsa sample .1, of size n, of secondary units
using possibly a different sampling design than
at stage 1. The designs are assumed to be
non-informative, i.e. they do not depend on the
yij's and rites. E.g., in Thomsen and Tesfu
(1988) the two-stage sampling plan is to use
pps-sampling at stage 1 (letting selection prob-
abilities of primary units be proportAonal to the
xi's) and simple random sampling (srs) at stage
2.

The total sample size is n = EiE, n and
our data now consists of y(s) = {yij : i E s,
j E and rn(s) = {IN : i E s}. Let
y = (y(s), rn(s)). For the pps-sr sampling
plan mentbned above a commonly used design-
unbiased estimator of t is the modified Horvitz-
Thompson estimator (see for example Cochran
(1977), chapt 11)

IFIT =
x migi
no . zi

sEa

(1)

where pi = EieSi yij/ni.
In this paper a (superpopulation) model is

adopted, regarding rni, yij as realized values of
random variables M, Yij for j = 1, ...,Mi and
i = 1, ..., N. M = MN) is assumed
independent of all Yij, and further:

E(M) = Oxi, 170,10 = a2v(x2), (2)

Afj) = 0 ,

E(Yjj) = j.L, = 72, and
Cov(Yij,Yik) = pr2 if k j
Cov(Yij,Y1k) = 0 if 1 i.

Let 0 = (13,a,A, p) with p > 0 and let V5 =
EiEs V(Xi), V3 = Ezv.v(xi). Typically v() =
xg with 0 < g < 2.

rtoyall (1976) considers a similar model
for assuming the rn,'s are known, while



Royall (1986) also considers unknown m1's with
a model similar to (2).

The total t is now a realized value of a ran-
dom variable T , where T can be expressed as
T = ElE, EJESi Yii + Z with

Mi

Z = EEYij +EEYii (3)
iEs jgsi igs j=1

Expressing the total T on this form we see that
the problem ...a.a be described as one of predict-
ing the unobserved value z of the random vari-
able Z . It is often clarifying to write a predictor
7' of T on the form

iEs iEsi
(4)

where 2 then implicitly is a predictor of Z .
From this point of view THT, given by (1),
does not look like a reasonable predicor. Royall
(1970) seems to have been the first one to rea-
lize the value in representing any predictor on
the prediction form (4), see also Smith (1976).

Modelling the population in survey sampling
problems has been and still is controversial. An
important aspect of this issue is that the like-
lihood principle in a sense makes it necessary
to model the population. Without a model
the only stochastic elements are the samples
s = is,si : i E sl, and the likelihood func-
tion is then flat (see, e.g., Cassel et al., (1977)),
which means that from the likelihood principle
point of view the data contains no information
about the unobserved yij's and mi's. To make
inference we tl-nefore need to relate the data to
the unobserved values somehow, and the most
natural way of doing so is to formulate a model
(see also remarks by Berger and Wolpert (1984,
p. 114)).

The random variables observed are
M (s) and s, where s now is ancillary. The like-
lihood principle implies that inference should
depend only on the actual s observed and n .
on the sampling design. This is called the pre-
dictiou approach to survey sampling and will
be adopted in this paper. Hence everything is
considered conditior al on s. The prediction ap-
proach aims at choosing a predictor that is good

2

for the actual s obtained and :las given signi-
ficant contributions to a better understanding
of several problems in survey sampling, some
of which are mentioned in Thomsen and Tesfu
(1988). It also enables one to use more conven-
tional statistical methods, although the prob-
lem is not to make inference about 0 but rather
prEdict Z . Hence 0 basically plays the role of a
nuisance parameter.

To predict Z we shall use the concept of pre-
dictive likelihood, a non-Bayesian likelihood ap-
proach to prediction problems in general. One
can argue that in the context of a superpopula-
tion model survey sampling provides one of the
more natural prediction problems in statistics,
and predictive likelihood could therefore serve
as a basis for essentially all problems of this
kind in survey sampling. Some major references
to the general theory of predictive likelihood
are Hinkley (1979), Mathiasen (1979) and But-
le: (1986). A review of some of the suggested
likelihoods is given in Bjornstad (1990).

Section 2 introduces the concept of predic-
tive likelihood and shows how predictors and
prediction intervals can be constructed from a
predictive likelihood.

In Section 3 a predictive likePhood is derived
for the normal model. The usual approaches
to obtain a predictive likelihood do not work
in two-stage sampling, mainly because Z is a
sum of a stochastic number of random variables.
Therefore a modifiLacion is suggested.

The predictor obtained from the predictive
likelihood is given by:

20 = ;(Zly) = E(mi - ni) X
jEs

( 1 /5 ni/5

1 /5 + nip 1

4- /.1 E(J3xt) .
46,

Here, gi = 7-4Es y2/71.2 and d = (A,f, A, d, 6-) isA; 3
the MLE. With w, = EiEa 4/v(x)

ij = {E mizi/v(zi)}/wa . (5)
iEs

Since 14 is the weighted least squares estimator



it is the best unbiased estimator of p . Let ws =
(1 16)/(1 + no*

Writing Zo = EiEsE3gsi(tUsil + (1 Uh)gi)

Eiodki)ft we see from (3) that predicting Z
by 20 means that for i s each unobserved
Yij is predicted by and Mi is predicted by
ijzi. For i E s, j 0 si, Yij is predicted by
wz + (1

Three prediction intervals for Z based on
similar predictive likelihoods are constructed.
They are all of the form 20 ± u (a/2)F,(Z)
where u(a/2) is the upper (a/2)-point of
N(0,1). V(Z) is a measure of the uncertainty
in predicting Z of the form Vp(Z) = Ve.(ZIy)+
(term for parameter uncertainty), see (18).

With vi = Eic, v(zi),

Ve(ZIy) = 7.2 E(mi ni) x (6)
iEs

(1 p
niP

1
+ (mi rts 1)p.

p + nip
1 p 7.2(0.x per2

1 p + nip
+pEPzi(Pzi 1)) + 1.12a2vi .

ios

For large no, the three intervals are practically
identical. However, for small no they differ sig-
nificantly. To illustrate this confidence levels
are estimated by simulation for 1 a = .95,
no = 6, N = 10, v(x) = and selected values
of (x1,..., zN) z.,.nd .

In a subsequent paper a more comprehen-
sive simulation study fur estimating confidence
levels will be undertaken, as well as a consider-
ation of optimality for model-unbiased predic-
tors.

2. PREDICTIVE LIKELIHOOD

We shall here give a brief general introduc-
tion to the concept of predictive likeliho(A.
For a more complete exposition we refer to
Bjørnstad (1990). Let Y = y be the data. The
problem is to predict the unobserved or future
value z of a random variable Z usually by a
predictor and confidence interval for Z . It is
assumed that (Y, Z) has a probability density
or mass function (pdf) fo(y,z). In ger....ial we

3

let h() and f (1.) denote the pdf and condi-
tional pdf of the enclosed variables. The joins
likelihood function for the two unknown quan-
tities, z and 0, is given /p(z, 0) = My, z).
The aim is to develop a likelihood for z, L(zly),
by eliminating 0 from li,. Any such likelihood
is called a predictive likelihood.

Different ways of eliminating 0 then give rise
to different L. The two main type of sugges-
tions are the conditional predictive likelihood
Lc, essentially suggested by Hinkley (1979), and
the profile predictive likelihood Lp, first con-
sidered by Mathiasen (1979). Let R = r(Y, Z)
denote a minimal sufficient statistic for (Y, Z).
Then

Lc(*) = fo(b,-)/fo(r(yiz)) (7)

Lp(zIy) = Intaxfo(y,z) = f ez(y, z) (8)

Typically, Lc and Lp are quite similar when suf-
ficiency provides a genuine reduction and the
dimension of 9 is small.

In linear normal models, Lp will ignore the
number of parameters and can be misleadingly
precise. A modification of Lp, Lrnp, that ad-
justs for this was suggested by Butler (1986,
rejoinder), see also Bjørnstad (1990). Let Y =
(X1, ...,Xn) and Z = ), and assume
that all Xi's and Xi's are independent. Let
0 = (Oh ...,0k). Then Lmp is given by

Linp(zIy) = Lp(zIy). IP(az)11/2/11/z11Iu/2.

(9)
Here, P(0) = {Ifi(0)} is the "observed"
information-matrix based on (y , z), i.e. II;(0) =
02 log fo(y,z)MiaBi. H = II:(9:), and
Hz(0) is the k X (n + rn) matrix of second-order
partial derivatives of lcT fe(y, z) with respect
to 0 and (y , We shall assume that any L
considered is normalized as a probability distri-
bution in Z . The mean and variance of L are
Chen called the predictive expectation and the
predictive variance of Z , denoted by E(Z) and
Vp(Z). E(Z) is the. a natural predictor for z,
called the mean predictor. L(zly) also gives us
an idea on how likely different z-values are in
light of th data, and can be used to construct
prediction intervals for z. An interval (ay, by)



is a (1 a) predictive interval based on L(zly)
if .1:: L(ziy)dz = 1 a. A simplified (quasi)
(1 a) predictive mterval is of the form

Ep(Z) ± tzjipT (10)

where u is the upper (a/2)-point in the ac-
tual (exact or approximate) conditional distri-
bution, given y, of (Z E9(Zly))/ VV9(Z1y).

3. PREDICTOR AND PREDICTION INTER-
VALS IN TWO-STAGE SAMPLING BASED
ON PREDICTIVE LIKELIHOOD

In two-stage sampling, Z is given by (3), and
is a sum of two mixtures. Therefore, instead
of considering a predictive likelihood for Z di-
rectly, we look at a joint predictive likelihood
for Z and M(3) = (Mi, i ¢ s). It has the
following form

L(z,m(S)Iy) = 4(,)(zly)L(m(S)Iy) (11)

Lin(I)(zIy) is a preaictive likelihood for z con-
ditional on M(3) = m(3), i.e. based on
fe(y,zIm(3)). gm(3)1y) is a predictive like-
lihood for m(S) based on fo(y,m(i)). Then
Ep, vp follow the usual rules for double expec-
tation, i.e.

4(2) = 4{4(2IM(s))} (12)

V(Z) . Ep{vp(zIm())}
+Vp{Ep(ZIM(3))}

In (12) Ep(ZIm(3)) and Vp(ZIm(3)) are the
predictive mean and variance for Z from
L,(1)(zIy). In principle we can derive L(zly)
as the marginal likelihood from L(z,m(3)Iy).
The advantage of (11) is that we are able ' a

obtain E(Z) and V(Z) without actually de-
riving L(zIy).

Under the model (2) we

can factorize fe(y,z,m(i)) = f,,,o(m(s),mM)
fijo.,p(y(s), zIm(s),m(a)) and it is readily seen

that applying Lp, given by (8), to the terms
on the right hand side in (11) in fact gives us
Lp(z, m(it)Iy) = maxo My , z , m(3)), i.e.

Lp(z,m(s)1y) = Lnimip(zly)Lp(m(i)ly) . (13)

It follows that E(Z) and Vp(Z1 based on
Lp(z,m(3)Iy) can be derived by (12). We note
that Lc, given by (7), has the same propesty,
i.e. Lc(z,m(3)1y) = Lmm,c(zly)Lc(m(S)ly)

Normal model
It is now assumed that model (2) holds and

that Yij, A are normally distributed.
We shall first consider the second likelihood

in (11), L(m(g)ty), using L. Let tf,k)(E) denote
the k-dimensional multivariate t-distribution
with v degrees of freedom (d.f.) and variance-
covariance matrix E, i.e. t(E) is the distri-
bution of (U/14r)Vii where U ,,, Nk(0,E) and
w2 xl.

Let X(5) be the vector (zi : i 11 s).
Then Lp(m(:1)Iy) leads to a multivariate t-
distribution, specifically Lp(m(i)Iy) is such
that W() iix(s)1/6- , t")(V), where
the m.l.e. are f), given by (5), and 6.2 =
-1-- E (m. fizi)2/v(zi). V = (vii) withno tea t

= v(z) + xl/tu, and vij = xizj/w, for
i 0 j. P: follows that Ep(M1) = ijxi, Vp(Mi) =
---6-2(v(z1) + xl/zu.) and the predictive CO-no 2

p t) n70-2 Zi.ti /Wsvariances are Cov (f- M.1 ) = -- 1a er2
for i 0 j. This implies that

Ep(E MO = 13X, and (14)
ig,

x2Vp(E A) = nn°o 2 u --L)
visio

L., and L,flp (for M It7, i ¢ s), lead to
moments similar to (14) with no 2 replaced
by no 5 and no 4 respectively.

Let us now consider the first term in (11),
Lm(i)(4) based on fe(y, .z1m(3)). For this like-
lihood we will restrict attention to Lp, i.e. de-
riving Lm(i),p(ziy). The m.l.e. ti,f-2,/3 can be
expressed the following way:

it = E
ni Tli

:Ea
1 P + ntp 1 ii + nit.)

1 ( S S E ni(gi 11)2

E.

and ji is found numerically, maximizing
(n/2) log i-2 (n/2) EiE, log(1 (3 + niji) +

(15)

ra



((.. - no)/2)log(1 - A). Here, SSE =
EiES EiEn(Yij A)2. When nj = c, for all
i E s, then = = EiES Ydno, .1.2 =
SSIn, 'A= rnax (0,1 - c 1 SS ), where S S =

Y)2.
Consider first the case when p and T are

known. Then A is given by (15) with p replac-
ing 0. In this case Lm(i),p(zIy) is such that Z is
normally distributed with

Ep(ZIm()) = E(rni - ni) x (16)
iEs

( 1 p u1p

- p nip,. 1 - + nipYi)
igs

Vp(Zinz(3)) = V (Zly , m(g)) + (17)

2

x
LE. 1--p-Pnip kia iEs

1 p )2
1- p+nip

When p,T are unknown, Lm(1),p(zIy) will for
large no be approximately such that Z is
normally distributed with Ep(ZInz(3)) and
Vp(2,1:7(.i)) given by (16) and (17) with
13,.2 replacing p,r2 . It now follows, from
(13), (14), (16) and (17) that, approximately,
Lp(z,m(S)Iy) has E(Z) = Ea(ZIy) and

Vp(Z) = 176(ZIy) +

3.7C (1 - A)

7:2

x (18)

mi -
1---1 1 - 0 + niAiEs

)^2 ^2 Xi El g+6( .1.. 0.2 I 8 I

Here, Va(ZIy) is given by (6) and

h(k) - no .2a x
no - 4

(74..dE, ---N-1-k+nii5 n°11 ) (vi + 118

, k -2
x27:2

k

r
5i.2 6.2 \- z?

.
no - k tug L-4i.

The predictive likelihood

L(Pic)(z,m(g)Iy) = Lm(i),p(zIY)Lc(m(.3)IY)

leads to the same E(Z) while V(Z) equals (18)
with h(5) instead of h(2). With

L(PmP)(z, m(i)ly) = Lmmp(zIy) Lmp(m(.3)Iy)

we get the same E(Z) and V(Z) equal to (18)
with h(4).

It can be shown that, conditional on y, (Z -
E8(ZIy))/N/WO is asymptotically N(0,1)
as N - no oo provided that the xi's are
bounded as N - no oo. Hence Zly is ap-
:droximately normal for large N no, and the
quasi (1 - a) predictive interval given by (10)
becomes

Ed(ZIy) ± u (a12)VVp(Z)

where u (-S) is the upper a/2-point in N(0, I).
This amounts to regarding N (Ep(Z),Vp(Z)) as
a predictive distribution for Z . V(Z) equals
(18) if the interval is based on
while L(Ae) has (18) with h(5) and L(AmP) has
(18) with h(4). Let us denote these prediction
intervals by I,, /pc and .4p Clearly Ip C imp C
/pc.

For large no there is practically no difference
between these intervals. However, for small no
they do differ. To find out how the intervals
perform for small no (and small N) a simulation
study with no = 6 and N = 10 was done to esti-
mate V- confidence levels Cp = P(Z E /p(Y)),
Cpc = P(Z E Ipc(Y)) and Cmp = P(Z E
Imp(Y)), all conditional on s. The approxima-
tions to L,(i),p and to the distribution of Z
given y are not valid for small no and small
N - no. Still, it is of interest to find out how
the cove.age properties of the different intervals
are in this case. In a later paper a more com.
prehensive simulation study will be undertaken,
including also large no, N no cases.

The simulation study considers the following
two main cases, with s = (1,2, 3,4,5, 6), 1 - a =
.95, v(x) = x and ni c, Vi E S. (I) i = x2
= x3 = 50, x4 = x5 = 30, x8 = x7 = x8 = 100,
x9 = io = 50; c = 3,10. (II) i = x2 = x3 =



5000, x4 = xs = 3000, x6 = Z7 = Z9 = 10000,
Z9 = Zi9 = 5000; c = 10,400.

Casegi: Two values of 1.1 are considered, ps =
5,100. For II > 100 the confidence levels
seemed to be essentially equal to the confidence
levels when il = 100. With regard to cr,13 the
levels seemed to depend essentially on the ratio
Nu and we consider fila = .75, 1, 1.5, 2, 3.

(Ia): it = 100, 7 = 1, 5 and p = .1, .5, .9. The
confidence Jevels are approximately constant for
all the various chosen values of 0. Based on
simulation of 60,000 observations of (y, z) we
find Cp = .924, Cmp = .973, Cpc = .992.

Table 1. Confidence levels for case (I) and il =
5, 7 = 1; 1 - a :-: .95.

Cp .5
. 9

.1

.75 1 1.5 2 3

Cmp .5
.9

.1

Cpc .5
.9

.929 .936 .932 .937 .927

.930 .921 .913 .899 .891

.920 .923 .899 .895 .889

.971 .973 .962 .961 .948

.967 .959 .943 .927 .905

.961 .952 .930 .919 .904

.990 .991 .984 .980 .967

.989 .981 .971 .958 .930

.986 .978 .958 .948 .922

Table 2. Confidence levels for case (II) and a =
0 = 1, 1 - a = .95.

Tly .01 .05 .20

P
c

.01

Cp .10
.50

.01

Omp .10
.50

.01

Cpc .10
.50

10,400 10,400 10 400

.923

.923

.929

.974
.973
.971

.994

.994

.994

.936 .940 .926

.929 .920 .874
.896 .870 864

.970 .944 .949
.961 .923 .889
.922 .872 .866

.989 .951 .975

.982 .928 .911

.951 .876 .873

(Ib): p = 5, 7 = 1. Table 1 is based on simula-
tion of 5000 observations of (y,z) in each case.

Case (II): We consider 0 = a = 1. It seems
that the confidence levels depend on 11,7 only
through the coefficient of variation, Th.c. Table
2 is based on simulation of 5000 observations of
(y, z) in each case.

When no = 6 and N = 10 Ip is clearly too
short generally. ip, is typically too wide, espe-
cially when p is only moderately large. Overall,
Imp seems to have confidence levels closest to
.95 of the three intervals.
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